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values of the parameters fs and Ap,often encountered. 
The self-similar solutions found permit an estimate of the influence of compressibility 

of the ground during unloading on the motion parameters even when there is no self- 
similarity. They can be used to verify the efficiency of the approximate methods of 
solution. 
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The subject of this paper is the investigation of elastic solid bodies which conform to 
Hooke’s law 

‘15 = Cijmnemn (0.~1 

Here the tensor of elastic moduli c~ mn is considered to be a stationary random function 
of coordinates skwith isotropic mathematical expectation 

<c ijmn>= haSijSm*+EtD(6*m8j*+GjmSi*f WQ 

where ho and P” are invariant physical constants, 6ij is Kronecker’s tensor. 
Among such bodies are for example (in the region of small deformations) polycrystals 

without predominant directions of anisotropy and quasi-isotropic composite bodies. 

At the present time the case of macroscopically homogeneous deformation of statisti- 
cally isotropic homogeneous bodies has been studied in detail in g-43 and others. Here 
the relationship between the mathematical expectations of stress and strain tensors can 

be written in the form < bij> =2P<eij) + 31 a@ &*j (6.3 ) 

where 1\ and h are “effective” Lame’s constants and do not coincide with P” and X0. The 
constants mentioned can be calculated from given statistical characteristics of the sta- 
tionary random tensor cijmn by solving the t~~odirne~ional nonlinear stochastic prob- 
lem. An appropriate solution in the first approximation was obtained in /l]. Most general 
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and reliable results in this area can be found in [4]. The general case where the fields 

of tensors aij and ajj are nonstationary is more difficult. It was examined in [5] where, 

however, the arbitrary assumption was used that the centered part of the random vector 
of displacements of points of the body can be represented in the form 

rii* z ui - (ui> = aik (uk) (6.4) 

where uik is the random tensor the value of which is taken from the solution of the sta- 
tionary problem for a body with identical statistical properties. 

The nonstationary problem is examined below without any hypotheses. The solution is 

constructed in the form of a series which.satisfies the equations of equilibrium for a 

volume element of the body and the equations of continuity of strain. The coefficients 
of this series are stationary tensors which are independent of the shape of the body and 

independent of external forces acting on it. The coefficients are characteristics of elas- 
tic properties of the body and are determined according to the given stationary random 

tensor Cijmn. 

From the constructed solution, relationships follow between mathematical expectations 

of stress and strain tensors. The relationships have a form which is analogous to the rela- 
tionships between stresses and strains in the multicouple stress theory of elasticity ([6, 71 
and others). The solution also gives the differential equations for mathematical expec- 

tation of the strain tensor. In addition, this paper presents a statistical interpretation of 
the couple and multicouple stress theory of elasticity as it applies to the quasi-isotropic 
elastic bodies. An algorithm is outlined for the computation of physical constants, which 
enter into this theory, from a given random field of the tensor of elastic moduli. The 

fundamental idea of this work was already expressed in [8], where the series (2.1) pre- 
sented below and the recursion systems (4.6), (4.7) and (4.8) were examined. However, 

in writing the cited reference [8], the author did not yet have at his disposal concrete 

computations and was forced to resort to considerations of intuitive nature. This led to 
a mistake, the essence of which consists in the unfortunate selection of the deterministic 
tensor ecj” which was used for the expansion of the solution. Further investigation showed 

that consistency of the proposed method is ensured only under the condition that eij” is 
taken as the mathematical expectation of the strain tensor,i.e. it is necessary to assume 

that eij”= (eG>. Results presented below correct the work of [8] in the direction indicated. 

1. The problem to be examined reduces to the solution of the following equations in 
the linear theory of elasticity 

diQij -i_ Pi = djCijmnem* + Pi = O 

&mk einl az%nn _ 

f3Zk az, 
0 (1-l) 

bijlyj = cijmnemn iVj=fj (On S2) 

Here z, are orthogonal Cartesian coordinates, eij are components of the strain tensor, 
aij are components of the stress tensor, Cijma is the tensor of elastic moduli, S-2 is the 
surface bounding the body, Ni is the unit vector of the external normal to this surface, 
Fi and fi are external body and surface forces, e im% is the unitary antisymmetric pseudo- 
tensor of Levi-Civita 

&mk = 
51 

0 
(1.2) 
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acquires the value when its indices different and lower value 
at least pair of indices is same. The sign in must be 

when i, m, k = 1,2,3, - 3,1, 2 - 2, 3, 1 
the minus sign for all other sequences of indices. 

The product of such tensors which enter into (1.1) can be expressed through Kronecker’s 
unitary tensors, namely 

eimk EM = 6ij8,,6,1G smjbirt)kt + ‘jm6&n6ir - 

- 8j&m64il+ 6jk6in8ml - aU4t*‘i71% 0*3) 

In previous equations, and also in all subsequent equations, the convention of summa- 
tion over repeated (“dummy“) indices is utilized. 

The tensor of elastic moduli is considered to be a known stationary random function 

of coordinates. 

It is assumed that its mathematical expectation (Cij~n) (0.1) is given and the cor- 
relation tensor of the order eight has the form 

c$% (M&s) = &WI(W) %& VW) (1.4) 

where Mr and M, are two arbitrary points of the body, while 

&n UN = %mn W) - (Cifmn WD (4.5) 
In view of the stationary character of Cijm* the moment of relationship (1.4) will be 

a function only of E, zz 5$(l) - z,(Z) WV 
where 

The most general form of correlation tensor c$% (&,) is presented in [3]. 

External forces Fi and fi acting on the body are subsequently considered as deter- 
mined quantities. 

2. Following the method proposed in [8], we shall seek a random strain tensor eij in 
the form of an expansion 

” . - 

Eij -‘ EijV + Uijnz* EmYn f Pijm** * + TijmnPU a* + ‘*’ 
(2.l) 

here Eij” (~8) is a deterministic symmetric tensor of order two. Tensors of order four 

aijnanr of order five pijmnp, of order six Yijmnps, etc. are random functions of coordi- 

nates 5$. 
The idea of the method consists in the selection of a determin~tic tensor ~~~ in such 

a manner that the coefficients of series (2.1) will be stationary random functions which 
are completely determined by the given random tensor cijmn and do not depend on the 

shape of the body, on its dimensions. and on external forces which act on it. 
This idea can be realized if it is assumed that the coefficients of the series (2.1) are 

centered random functions, i.e. 

<aijmn> = (Pijmnp) = (Tijmnpq) I= *** - O (2.2) 

In this case the deterministic tensor Eij ” turns out to be identical with the mathemati- 

cal expectation of the strain tensor e. ,w 
11 = {&ij) (Z.S) 

Here, previously and s~sequently, the symbol ( > indicates averaging over the 

entire representation. 
Taking advantage of (0.1) and (2.1) we have the following series for the stress tensor : 
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(2.4) 

Aijmn = Cijmn -t- Cijrsarsmni Uijmnp = CiirsPromnp, 'i,;,nnPQ =_ 'ijrvrrsnll,PU (2”) 
Coefficients of series (2.4) are not centered quantities, which corresponds to 

” 

Substituting into the system of equations (1.1) 

Qii = (~ij> -k 6ij*f 8ij I= (Eij) + 8ij* 

we arrive at two systems 

(2.9) 

a<o..> 
tl + jTi z 0, &k @l 

ak3*v, 
axj -= 0, ($j) Nj = fi (OR 61) (2*io) 

axk as, 
as,; 

-y= 

a%,:, 
0, @k&l _ 

axk ax+ = 0, a&wj = 0 (OR 8) (2.H) 

Let us examine them consecutively. 

3. As we specified above, the coefficients of series (2.1) represent stationary random 
functions of coordinates. In this case the coefficients of series (2.4) will also be station- 

ary random functions, These coefficients are determined by Eqs. (2.5) as products of 
stationary random functions. It is apparent that the mathematical expectations of these 
coefficients must be isotropic tensors, because otherwise the relationship between the 

mathematical expectations of stress and strain tensors would have an anisotropic char- 
acter which would be a contradiction of the assumption of statistical isotropy of the body 
which is being examined. 

The most general form of an anisotropic fixed tensor of the fourth order is given by 

the following expression : 

(A ijmn) = %liij~mn + a3 (6&&j% + aj*Q&) (3.1) 
where a, and a, are scalar constants. Tensors of fifth order (and generally uneven orders) 
cannot be isotropic. In accordance with this we have 

(B ijmnp) TT O (3.2) 

The most general form of an isotropic fixed tensor of the sixth order is given by the 
following expression : 

<c ij*nP*) = gX8ij6mn8*Q + ‘1% g2 (8mp8ni2 + 6*P67W) 8ij f 

+ ‘13 g3 (S$p&jq + hjpd<*) am* + I13 47, (&im&j* -+ 8jm8in) ‘WI f 

+ l/d g& [(djp& + 6,paj*) &i* -t (&ip6sq ‘t Gins*a) &jm + (3.3) 

f- (8jp6m@ + &~p~j~) ain 4 (&ipanl* -t ~*~~P~) ‘i?%l 

where g,, g2, g3, a and g, are scalar constants. In (3.1) and (3.3) it is taken into 
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consideration that the investigated tensors, as is evident from (2.6), must permit the 
transposition of index pairs (i, I), (m, n) and @, q). 

Substituting (3.1). (3. ‘2) and (3.3) into (2.6) we obtain 

This expression can be transformed somewhat if we take into account that the tensor 

Ed” is subject to Saint-Venant’s relationships (2.10) n, which with utilization of (1.3) 
are reduced to the follow~g form: 

AEij” 
a%&;, a$; ’ r a ‘2% _ 0 _t_-_-_-- 

axi axj azj ax, axi axk (3.5) 

Into (3.4) and (3.5) the following common notation is introduced : 
av 1 A( )==- 

It follows from (3.5) that 
ask ask 

(3.6) 

” 
” a-Ekl 

A%= asat 

a$k a%; 

”  

-+-= 
k I axj ax, axi a~, 

Aeij” +~ (3.7) 
i i 

Equations (3.7) permit to reduce (3.4) to a simpler form 

(Q) = 2a& + a,E&ij + b, ,","E -+ bzAeijY + b~A~k~~~j -/- . . . (3.8) 

where 1 j 

b, = gs + g5 

bs = g4 + g, 

b,= gi +gs (3.9) 

From the fact that the mathematical expectation of the strain tensor (Eij) = eii” is 
subject to Saint-Venant’s relationships it follows that 

1 all.- 
Eijv = 5 * + 

( 

auj- 

j 
ax 

i) 
(3.10) 

where the vector ” U, is the mathematical expectation of the displacement vector . 

Substituting (3.10) into (3.8) and then introducing (3.8) into (2, IO) we arrive at a 

system of three equations in partial derivatives with three unknown u,” . 
This system (taking into consideration in the series (3.8) all the terms) will have an 

infinitely high order. If, however. in the series (3.8) only those terms are retained which 
were written out above, then a system is obtained which is of an order twice higher than 
the system of equations in the classical theory of elasticity. This last system will be 
identical in its form to the system of equations of the couple stress theory of elasticity 

( fl, ‘I] and others). 
So far here it remains unknown (1) how to determine the scalar constants ur, us, g,,... 

-. . , g5 which enter into series (3.4). from given statistical characteristics of the random 
field of the tensor of elastic moduli cifrn,,i (2) what boundary conditions must be placed 
on the surface which bounds the body so that the problem will become completely deter- 

mined ? The substitution of series (3.4) into (2.10}3 gives only three boundary conditions 
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which is apparently insufficient. 
For an answer to these two questions it is necessary to examine the system (2.11). 

4* Let us substitute the series (2.7) into Eq. (2.11)1 and require that this equation be 
satisfied by equating to zero coefficients of the tensor Eiiv and all its partial derivatives. 

An analogous procedure is used with the equation of continuity (2. Ilk , substituting into 
it the series (2.1). As a result the following sequence of equations is obtained 

C3.4.: 
- = 0, *lmn ~%,nLn 

axj 
titk~jsl ~ =: 

ax, a&-, 
0 (4.1) 

(4.2) 

(4.5) 

In writing (4.4) and (4.5) in the expanded form it is necessary to take into account 

(1.3). 
It was stipulated above that the coefficients of series (2.1) are considered centered 

stationary functions of coordinates, and it was pointed out that in this case the coeffici- 

ents of the series for the stress tensor (2.4) also are stationary random functions. 

Utilizing (2.5) and taking into consideration the above remark, we can reduce the 
system of equations (4. l), (4.2) and (4.3) to the form 

& ijrsarsmn _ 
ac.. &a 

r)mn 
ax. --_asj’ 

eirke jsl rsmn Pz!z 

3 aXkdxl 
0 (4.d) 

The system (4.6) decomposes into six independent systems of equations (according to 
the number of different combinations of indices m and n). Each of these is identical with 
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the system of equations ln the linear theory of elasticity. The role of the strain tensor 
in these systems is played by the tensor Clij(mn). The tensor of elastic moduli is ciir,, 
while external body forces are given by the equation 

(4.9) 

The requirement for the tensor CC+,~~ to be stationary (in some respects analogous to 
the requirement of periodicity of the solution) replaces the boundary conditions for the 

indicated six systems of differential equations. 

Taking into consideration this statement, the problem of determining the tensor 
is completely solved by means of integrating six systems (4.6). 

In essence this particular problem was examined in p. 2 and 43, which were devoted 
to the investigationofthe relationship between the mathematical expectations of tensors 
&ii and oij for polycrystals in the particular case when 

(Q) = con&, <s~,~) = const 

After determination of aijnn it becomes also possible to find the next coefficient of 

the series (2. l), i. e. flij,n,lp. For this purpose it is necessary to take advantage of sys- 

tem (4.7) which decomposes into 18 independent systems of equations (according to the 
number of different combinations of indices 171, n and p). Each of the indicated systems 
is identical to equations of the linear theory of elasticity in the presence of internal 

stresses in the body. The role of the strain tensor in these equations is played by the 
tensor Pij(mnP,t the tensor of elastic moduli is cijrnn . External body forces are deter- 

mined by the expression F~(,,$ ) = * 
- Ci( pmn) - Ci(p)rs al‘s(tn7Lf + (C~(~)~~~~~(~~,~)~ 

The incompatibility tensor is given by Eq. (4.4). 
(4.10) 

The requirement for the tensor fl ijmnP to be stationary is equivalent to specifying bound- 

ary conditions for the 18 systems of differential equations indicated above. 

In an analogous manner the system (4.8), and also all subsequent systems of equations 
for coefficients of the series (2.1). decompose into independent systems of equations, 

each of which is identical to equations of linear theory of elasticity for a body with 

internal stresses, In this connection the role of boundary conditions for all these systems 

of equations is played by the requirement of stationary behavior of their solutions. By 
the same token all coefficients of series (2. I) can be determined successively by solving 
the recurrent system of partial differential equations described above. 

6, As a result of operations described above, two series are constructed, (2.1) and (2.4). 
The first series expresses the strain tensor. The second series represents the stress tensor 
through the mathematical expectation of the strain tensor and through partial derivatives 
of the mathematical expectation with respect to coordinates. These series have the 

following properties : 
the coefficients of these series are stationary random functions of coordinates, inde- 

pendent of the shape of the body, its dimensions, and external forces acting on it. The 
latter are considered in this connection as determined vectors ; 

the series (2.4) identically satisfies the system of equations (2. ll), ; 
the series (2.1) identically satisfies the system of equations (2.11)2 ; 

Series (3.8), which expresses the mathemati~l expectation of the stress tensor through 
the mathematical expectation of the strain tensor, is known to the same extent as series 

(2.4). 
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By the same token the above discussion exhausts the question about the relationship 
between averaged stresses and strains in statistically isotropic, homogeneous, linearly 
elastic bodies. 

However, the method of calculation of mathematical expectation of the strain tensor 

(&if) = Eij” has not been completely explained yet in each concrete particular case 

(i. e. as a function of body dimensions, its shape, and external forces acting upon it). 

For this tensor a system of differential equations (2. 1O)1 ,a of infinitely high order 
was obtained above. For this system so far there are only three boundary conditions 

(2. lo), which are insufficient for single-valued determination of &ii”. The missing 
boundary conditions can be formulated if it is taken into consideration that so far the 
equation (2.11) 3, which determines the boundary value of the centered random vector 
Oij~_~j , has not been utilized yet. 

From the last equation we can obtain an infinite set of boundary conditions for the 
deterministic tensor aij“ and its partial derivatives with respect to coordinates. For 

example, these conditions can be derived by equating to zero the moments ofcomponents 

of random vector uiJ*Ni on the surface bounding the body. Such a method is most 

obvious ; however, it results in nonlinear boundary conditions. 
An alternate possibility is to derive the boundary conditions for the tensor eii* and 

its partial derivatives from the variational problem formulated in such a manner that 
its Euler’s equations are identical with system (2. IO) 1 written in terms of displacements 

u, . This method results in linear boundary conditions. The system of equations obtained 

in this case for determination of mathematical expectation of the random vector of dis- 

placement of points of the body 21, is consistent with equations of the multi-couple stress 
theory of elasticity [6, 71. 
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